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Abstract—We develop an algorithm for sequential sensor
selection and channel access decision in CR (cognitive radio)
networks under shadowing with the objective of maximizing
total number of correct decisions on channel availability over
finite time periods. The problem is formulated as a MAB (Multi-
Armed Bandit) problem and our index-based heuristic algorithms
is shown to achieve sub-linear accumulated regret in time period
T . We also evaluate the performance of the proposed algorithms
with numerical examples.

Index Terms—Cognitive radio, Sensor selection algorithms,
channel access decision, Multi-armed bandit problems

I. INTRODUCTION

To meet the exponentially growing demand in mobile data,
spectrum sharing between wireless communication systems
and radars has become an emerging area of research [1],
[2]. Radar bands are especially attractive for spectrum sharing
because of its large total bandwidth (1GHz below 10GHz) and
radar’s sparse geographical use. In fact, the US designated
the 3.55 GHz radar band to be a shared band and established
the Citizens Broadband Radio Service (CBRS), allowing com-
mercial systems to use the band previously used mainly by
radar systems (e.g., SPY-1 and SPN-43). In the 5 GHz UNII
bands (i.e., U-NII-2B (5350-5470 MHz) and U-NII-4 (5850-
5925 MHz)), wireless applications are also allowed to coexist
with radars [2]. However, the regulation is very conservative
requiring a high sensitivity level of secondary users to avoid
causing interference to radars, which makes it hard for the
band to be efficiently utilized by other wireless applications.

Therefore, to protect licensed users (primary users, PU)
while achieving high spectrum utilization by the unlicensed
users (secondary users, SU), it is important to improve the
sensing performance of the SU network. The sensing perfor-
mance can be improved by increasing the number of sensors
and/or the sensing time [4]. However, it is not desirable to
have all sensors perform spectrum sensing every time due
to the energy constraint on the handheld devices. Moreover,
for a centralized SU network, sensing results should be sent
back to the controller, which results in high overhead in the
control channel. Therefore, it is more desirable that a subset
of sensors are selected for sensing at a time. Similarly, the
sensing time is also limited because SUs should remain silent
during sensing periods, which wastes precious communication
opportunities. To maximize the sensing performance under
these limitations, optimal solutions of the sensor selection and
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channel access decision have been extensively studied [3]–
[7]. When statistical information such as the distribution of
received PU signal at SU side is known, it is well known
that the optimal channel access decision rule can be obtained
by using the likelihood ratio test (LRT) of binary hypothesis
testing [8] for a given sensor selection. Finding an optimal
sensor selection generally includes applications of LRT to all
possible sensor candidates.

However, the presence of shadow fading poses a challenge
in designing an optimal sensor selection and access decision
rule. Depending on the location, each SU experiences different
channel conditions from the PU transmitter. Even though the
path-loss effect on an SU network is assumed to be known
(or can be computed from location information), shadow
fading effects still remain. Therefore, channels between the
PU transmitter and SU receivers are not known to the SU
network controller a priori and can only be learned through
sensing feedback [4]. The feedback information, however, is
also limited as only a subset of SUs can be selected for
sensing at a time and the sensing results are contaminated
by noise. Moreover, only the sensing results measured during
the active period of PU contain information on the channel
quality between PU and SU.

To cope with such uncertainties resulting from lack of prior
knowledge and limited feedback, we show that the problem
can be considered as an instance of the multi armed bandit
(MAB) model in which each SU is considered as an arm.
Thus, the objective is to find a sensor selection and a channel
access decision rule which maximizes sensing performance in
terms of the total number of correct decisions on the channel
availability over a finite time period. In contrast to other works
where the statistics of PU channel process is unknown while
the sensing is error-free, in our problem, the error probability
of each SU is initially unknown and the statistics of PU
activity is assumed to be known, e.g., i.i.d. Bernoulli process
with a known mean. This differentiates our problem from
earlier works in the following aspects. Firstly, the stochastic
processes in our problem have a hierarchical structure where
the distribution from which the sensing samples are taken
at each round depends not only on the sensor selection but
also on the state of the PU (idle or busy). So, even for a
given sensor selection, at each time t, the sensing samples
are taken from a mixture of two Gaussian distributions, which
does not fall into the standard reward distributions such as
the exponential family [9], [26] or an independent Markov
machine [10], [14]–[18]. An EM (Expectation Maximization)
algorithm for Gaussian mixture models is used for parameter
learning in [23], but the sensor selection problem is not
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considered. Secondly, unlike other MAB formulations which
issue a reward depending on the arm selection, in our problem,
the reward depends both on the sensor selection and the
channel access decision. Therefore, even if the sensing samples
are taken from an i.i.d. distribution for a given selection
independent from the history, the reward process in our
problem can be no longer i.i.d. due to the dependency of the
reward on the access decision rule. We will show how we
benefit from the i.i.d property of the sampling space to tackle
this problem later in Section IV. For a detailed discussion of
the non-i.i.d. rewards, see Section IV.

Our contributions are three fold.
• We formulate the sequential sensor selection and channel

access decision problem in the context of MAB problems
to leverage an exploitation-exploration trade-off, which
includes uncertainties on the sensing abilities of SUs due
to unknown shadow fading. The received PU signal on
the SU side is modelled to have a Gaussian distribution
and the unknown shadowing effect is incorporated as an
unknown mean of the distribution.

• We propose an upper confidence bound (UCB) based sen-
sor selection algorithm and a sample mean based channel
access rule. It is shown that the number of selections
of sub-optimal SUs increases at most logarithmically in
time horizon T , i.e. O(log T ), which is known to be
order optimal. Combined with our channel access rule,
we finally show that our algorithm has a sub-linear regret
growth rate, which is at most O(T

2
3+ε ).

• The performance of our algorithms are evaluated through
simulations under different settings of unknown parame-
ters. Also, we compare the performance of our sensor se-
lection algorithm with UCB-1 [11], an alternative solution
approach to the sensor selection part of our problem. For
the comparison of selection algorithms, fixed threshold
test is used for the channel access decision.

A. Related Work

1) Sensor selection and channel access decision: Theo-
retically, finding an optimal channel access decision rule for
spectrum sharing is the same as a binary detection problem
widely studied in sensor networks whose optimal solution
is obtained by LRT. However, the LRT-based solution is
applicable for the cases where the measurement model (the
probability distribution of the sensing measurement under
each hypothesis) is known to the decision maker and it
becomes computationally intractable as the number of sensors
increases. In [6], the measurement distribution of the active
PU channel is modeled as a correlated Gaussian under the
assumption of the log-normal random shadowing with all
parameters known. They provide an approximation decision
rule based on deflection criteria to tackle the computation
issue of LRT. On the other hand, in [4], the authors show
that the optimal rule can be obtained from LDA (Linear
discriminant analysis) if the shadowing is considered as a fixed
parameter (which is a specific realization of a random variable)
as in this case, the measurement distributions have a common
covariance matrix. An optimal sensor selection can be found

by repeatedly applying LRT (or its approximation methods) to
each candidate for a known measurement model. In the cases
where LDA assumptions are satisfied, the sensor selection
problem reduces to finding a sensor set which have the best
PU transmitter-to-SU channel quality in the mean [4]. In [5],
a Bayesian decision rule-based access decision algorithm is
proposed to maximize system throughput when the probability
of mis-detection and the probability of false alarm of each SU
is known. In this paper, in contrast to [4]–[6], we consider
learning the optimal sensor selection and access decision when
neither the measurement model nor local sensing ability such
as the probability of mis-detection or false alarm is initially
unknown.

2) Multi-armed bandit: MAB models have been widely
adopted for a large class of sequential optimization problems
[9]–[22], providing learning solutions during operation time.
In classical MAB problems [9], [11], when a player pulls
an arm, it offers an i.i.d. random reward drawn from its
associated distribution with an unknown mean. At each time,
the decision maker chooses an arm, aiming to maximize the
total expected reward in the long run. This problem involves
the well-known tradeoff between exploitation (maximizing
instantaneous reward) and exploration (learning unknown re-
ward statistics). MAB usually focuses on a quantity termed
cumulative expected regret. The cumulative expected regret of
a sequence of decisions is simply the cumulative difference
between the expected reward of the options chosen and the
maximum reward possible. In [11] and [26] it is shown that
the confidence bound-based algorithms achieve logarithmic
regret uniformly in time for bounded reward distributions and
Gaussian reward distributions. There are also many variants
of the classical MAB models including Markov rewards and
multi-player multi-arm scenarios. For example, an application
of restless MAB formulation to wireless downlink scheduling
problem with ARQ-based CSI feedback can be found in
[18]. In [12], [13], multi-band spectrum sensing and access
problem in CR is formulated as a MAB problem where
each PU channel is modeled as an arm with unknown i.i.d.
Bernoulli reward process. Extensions to Markov PU processes
and decentralized multi-user multi-band sensing scenarios can
be found in [10], [14]–[17]. However, most of the CR literature
focuses on learning unknown channel availability statistics,
assuming perfect sensing ability, i.e. an SU can acquire an
error-free knowledge on the state of the sensed channel. In
[24], [25], the authors investigated the impact of sensing errors
on the channel selection algorithms, but optimization over
sensing abilities is not considered.

The rest of the paper is organized as follows. In Section II,
we formulate the problem and present the system model. In
Section III, we design a sensor selection algorithm assuming
that a genie-aided LRT decision rule is employed for each
selection. In Section IV, we provide a joint design of sensor
selection and channel access decision. Finally, we evaluate
the performance of our proposed algorithms in Section V and
conclude the paper in SectionVI.
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Fig. 1: Spectrum sharing scenario

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network model

As shown in Fig.1, we consider a centralized SU network
with N SUs indexed by i ∈ {1,2, · · · ,N }. Each SU is assumed
to be equipped with a sensor and SUs and sensors are used
interchangeably in this paper. At the beginning of each time
slot indexed by t ∈ {1,2, · · · ,T }, the SU network controller
schedules an SU to sense the channel (sensor selection). On
receipt of the schedule, the selected SU performs sensing
on the PU channel and reports its local measurement to the
network controller. We assume an SU uses energy detection
for spectrum sensing because the PU signal features such
as pilots and preambles are unknown to the SUs [4]. After
the network controller collects local sensing data, it make a
decision on channel availability (channel access decision). If
the controller’s decision on channel access is positive, SUs
access the channel for the remaining period of the time slot. At
the end of the time slot t, we assume that the controller obtains
the information of true channel state at time t. The SU network
controller does not perform sensing and control commands and
feedbacks are transmitted using a separate (dedicated) control
channel for a reliable network management. The procedure
and the algorithms to be used are summarized in Fig. 2 and
Fig. 3, respectively.

Let us denote by yt the distribution of signal strength of PU
measured by SUs at time t. Under the same assumption as in
[3], [4], [7], yt has a multi-variate Gaussian distribution:

yt ∼



N (0,σ2I) when Ht = 0
N (µ,Σ) when Ht = 1

(1)

where Ht represents true channel state at time t and when it is
0 (1), it means the channel is idle (busy). µ is an N ×1 vector,
i-th component of which represents received signal strength at
SU i which is determined by the PU transmit power and the
channel gain between the PU transmitter and the SU i. To
incorporate shadowing effect into the model, in [3], [7], it is
assumed that under H1, all SUs have the same mean µ and
the variance is the summation of the variance of the noise
and the shadowing. (Note in this case the Covariance matrix
of yt under Ht = 0 and Ht = 1 is not the same). In this
paper, we assume that µ is unknown. This is a reasonable
assumption because at a fixed location, shadowing effect is

eNB/AP UE/MS #i

Sensor selection 
{It}

If i   It, perform PU 
channel sensing

Access decision 
{At}

If At=1, transmit data
If not, stay idle

∈

Fig. 2: SU network protocol for spectrum sharing

UCB based sensor selection

Fixed threshold test
(Genie-aided)

Threshold test based 
on sample mean

Alg. 1. UCB-FT
(Sec.III)

Alg. 2. UCB-LLR
(Sec. IV) 

Sensor selection

Access decision

Fig. 3: Summary of the algorithms

time-invariant and can be regarded as an specific yet unknown
realization of a random variable (See [4] for details). Now the
only randomness in the model comes from noise effect, we can
assume the covariance matrix under H1, Σ, is also equivalent
to σ2I, where σ2 is the known sampling noise variance. We
note that the noise effect is independent across SUs. Also, we
can assume the same noise variance for all SU because when
the noise variance is different, we can define a new normalised
random variable zti =

y t
i

σi
and use zti instead of yti .

Using an appropriate shadowing model, we can also make
use of our prior information on the unknown parameter µ. For
example, under log-normal shadowing with a dB spread σ0,
we have a Gaussian prior distribution for µ in dB:

µ ∼ N (µ0,Σ0), (2)

µ0 can be computed from the path-loss model without shad-
owing. The randomness due to shadowing can be modeled in
covariance by setting the diagonal component of Σ0 to the
shadowing variance σ2

0 and the (i,j) off-diagonal components
to ρi jσ

2
0 , where ρi j is correlation coefficient between SUs i

and j.
We assume that the process of PU channel availability is
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a Bernoulli process with known mean θ ∈ (0,1). When SU i
is scheduled at time t, the sensing sample will be taken from
one of the following distributions depending on the state of
PU channel.

yti ∼



N (0,σ2) when Ht = 0
N (µi ,σ2) when Ht = 1

(3)

µi is the i-th element of unknown µ in (1). Note that the
distribution of yt given that SU i is selected at time t is
equivalent to yti , and the measurement model of (1) and (3)
are independent of t under time-invariant shadowing. Since
we assume σ to be known, the distribution of yti is known
under Ht = 0. The distribution of yti under Ht = 1, however,
is unknown with a single unknown parameter µi . Table I
summarizes the notations used in the paper.

B. Reward

Let us denote by {It }Tt=1 and {At }
T
t=1 a finite time sensor

selection policy and an access decision policy, respectively.
A policy I consists of a sequence of random variables
It ∈ {1,2, · · · ,N }, indicating which SU has been selected
for sensing at time t based on the history of observations
(I1, y1, A1,H1, · · · , It−1, yt−1, At−1,Ht−1). A policy A consists
of a sequence of binary random variables {At }

T
t=1, indicating

whether to access the channel in time slot t or not, based on
all the past informations including sensor selection It and its
sensing result yt . Let us define a reward collected at time t as
follows:

Xt =



1 if At = Ht

0 if At , Ht

(4)

Xt is an indicator of whether the correct decision on the
channel availability is made at the time t. Then,

E[Xt ] = E[1(At = 1,Ht = 1) + 1(At = 0,Ht = 0)]
= P(Ht = 1)(1 − PMD ) + P(Ht = 0)(1 − PFA), (5)

where 1(·) is the indicator function and PMD and PFA is
the mis-detection probability P(At = 0|Ht = 1) and the false
alarm probability P(At = 1|Ht = 0) at time t, respectively.
The expected reward can be interpreted as the expected system
throughput (sum of the PU throughput and the SU throughput)
at time t, if the capacity of PU and SU are the same and
concurrent transmission of SU and PU is not allowed [5].
In fact, it is also possible to define the reward function as
a weighted sum of the indicator functions of the possible
combinations of At and Ht . For example, instead of (5), we
can define Xt = w1(At = 1,Ht = 1)+(1−w)1(At = 0,Ht = 0)
for some w ∈ (0,1) to balance the trade-off between the PMD

and the PFA. The arguments in the following sections still
hold, but for the exposition purpose, we will focus on (5). In
the case of w = 1, the problem becomes a detection probability
maximization, but we need to put a constraint on the maximum
PFA to avoid an undesirably conservative solution.

C. Objective

The objective is to design policies {It }Tt=1 and {At }
T
t=1 for

which the expected accumulated rewards collected up to time

Symbol Meaning

y t
i Received PU signal strength at i-th SU at time t

µi Unknown mean of y t
i |Ht = 1

σ Variance of y t
i |Ht = 1 and y t

i |Ht = 0
µt
i Mean of prior distribution of µi

σ t
i Variance of prior distribution of µi

Ht PU activity at time t
θ Probability that PU is busy
It SU selection at time t
At Access decision at time t
ηt
i Threshold used for access decision at time t when It = i

Xt Reward collected at time t

RT
opt Optimal expected total reward up to time T with a known µ

TABLE I: Notation list

T , i.e.
T∑
t=1
E[Xt ] is maximized. Equivalently, the expected

regret up to time T , i.e. RT
opt −

T∑
t=1
E[Xt ] is minimized, where

the optimal reward RT
opt is the maximum expected reward

gained by a genie to which all the parameters of the model
is known. With the definition of reward Xt in (4), this can
be interpreted as designing a sensing scheduling and an
access policy which maximizes the expected number of correct
decisions on channel availability over a finite time period T .
We note that it is also possible that At is independent of past
decisions and observations including sensor selection It and
sensing result yt . For example, at one extreme, we can design
a deterministic access rule such that At = 1 for all t. However,
the expected reward of this access policy will remain to be θ
for all t. In the following sections, it will be shown how we
can approach to the maximum expected reward by making
access decisions based on the sensing results with a carefully
designed sensor selection algorithm.

III. SEQUENTIAL SENSOR SELECTION WITH FIXED
THRESHOLD TEST

A. Definition of Regret

In this section, we first consider a sensor selection policy
{It }Tt=1. It is assumed that the access policy uses a genie-aided
fixed threshold test for each SU selection and the value of
the threshold is given. Under this assumption, on receipt of
yt from SU It , the controller makes a channel access decision
according to the following threshold test.

yt
At=1
≷

At=0
η It (6)

where η corresponds to the threshold of LRT, i.e. ηi =
µi

2 +

log 1−θ
θ . Then, the reward Xt given Ii = i is Xt

i = 1(yti ≥
ηi ,Ht = 1) + 1(yti < ηi ,Ht = 0) and successive scheduling
of SU i will yield the rewards X1

i ,X
2
i , · · · according to some

unknown i.i.d. distribution

X t
i =




1 with probability pi
0 with probability 1-pi

(7)

where 1 − pi is the error probability of SU i. Using (3) and
(6), pi can be computed as follows:

pi = (1 − θ)Φ(
ηi
σ

) + θΦ(
µi − ηi
σ

) (8)
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Fig. 4: Measurement distribution at SU i at time t : when Ht = 1, the
sensing sample is taken from a Gaussian with unknown mean µi if It = i.
µi has a Gaussian prior with mean µt

i and variance (σ t
i )2. Note that the

instantaneous expected reward pi at time t corresponds to the unshaded
area of the plot which not only depends on µi (the selection) but also on
the threshold ηt

i (access decision)

where Φ(·) is the cumulative distribution function of standard
normal (see Fig. 4). Note that pi is unknown as it is a
function of unknown parameter µi . Now, we define the optimal
reward RT

opt. Let i∗ denote the index of the SU with largest µ,
i.e. i∗ = argmaxi µi . Let us call the selection of SU i∗ the
optimal selection. Then, the optimal sensor selection policy
always selects SU i∗, yielding the total expected reward RT

opt =
T∑
t=1
E[X t

i∗ ] = p∗T , where p∗ = (1 − θ)Φ(ηi∗

σ ) + θΦ( µi∗−ηi∗

σ ).

Therefore, the expected total regret at time T is defined as

RT
opt −

T∑
t=1

E[Xt ] = p∗T −
T∑
t=1

N∑
i=1

E
[
E[Xt1(It = i) |Ft−1]

]
=

N∑
i=1

p∗E[nTi ] −
N∑
i=1

E[Xi]E[nTi ]

=

N∑
i=1

(p∗ − pi )E[nTi ] (9)

where, 1(·) is the indicator function, nTi =
T∑
t=1
1(It = i)

and Ft−1 is σ-field generated by previous decisions and

observations. The second equality follows since T =
N∑
i=1

nTi ,

1(It = i) ∈ Ft−1 and X t
i is independent of Ft−1 (i.i.d. for a

fixed threshold test).
Remark 1: Without the genie-aided threshold given to each

SU selection, we may set η such that ηi = η for all i, for some
constant η > 0. Then, any selection policy which finds SU i∗

can obtain a UMP (uniformly most powerful) test solution by
setting η to σΦ−1(1 − PFA), which maximizes the detection
probability given a false alarm probability PFA. Note that if
µi − µ j > 0, pi − pj = θ

(
Φ( µi−η

σ )−Φ( µ j−η

σ )
)
> 0 in this case.

However, even with It = i∗ for all t > 1, the UMP test does
not optimize error probability.

B. UCB-FT Algorithm

We now construct the UCB-FT (Upper Confidence Bound
- Fixed Threshold) algorithm which is a deterministic index-
based sensing scheduling policy with a given fixed threshold

Algorithm 1 UCB-FT (UCB with Fixed Threshold)

Input: initial prior on µ, variance σ2 and PU channel infor-
mation θ

Output: scheduling sequence {It }Tt=1
1: for t=1 to T do
2: for i=1 to N do
3: compute qt

i = µ
t
i + σ

t
iΦ
−1(1 − 1

Kt )
4: end for
5: schedule SU It = argmaxi qt

i
6: obtain yt and make access decision At according to (6)
7: obtain Ht

8: if Ht = 1 then
9: update prior according to (10)

10: increase n̂t
It

by 1
11: end if
12: increase nt

It
by 1

13: end for

test. In light of [26], let us first describe prior update equation
for unknown parameter µ. Recall that the initial prior on µ is
Gaussian with mean µ0 and Covariance Σ0. For independent
shadowing, we have an uncorrelated prior, Σ0 = σ2

0 I. Let
us denote by n̂t

i the total number of measurement samples
taken from the unknown distribution the network controller
has received up to time t from SU i. More formally, n̂t

i =
t∑

j=1
1(I j = i,H j = 1). Then, the uncorrelated prior is updated

according to the Bayesian update rule [26], [27].

µti =
ξ2µ0

i + n̂t
i ȳ

t
i

ξ2 + n̂t
i

, (σt
i )2
=

σ2

ξ2 + n̂t
i

(10)

where ξ = σ
σ0

i

, and ȳti is the empirical mean of measurements

from the unknown distribution of SU i. Since ȳti ∼ N (µi , σ
2

n̂t
i

),

µti ∼ N (
ξ2µ0

i + n̂t
i µi

ξ2 + n̂t
i

,
n̂t
iσ

2

(ξ2 + n̂t
i )

2 ). (11)

For noninformative prior, by setting ξ → 0,

µti ∼ N (µi ,
σ2

n̂t
i

). (12)

At each time t, the UCB-FT algorithm selects an SU with
the maximum index qt

i , i.e. it = argmaxi qt
i , with

qt
i = µ

t
i + σ

t
iΦ
−1(1 −

1
Kt

) (13)

where K is a tunable parameter. This can be interpreted as
(1 − 1

Kt ) upper credible limit of the unknown parameter, i.e.
the true mean µi falls within the limit with probability 1− 1

Kt .
For detailed information on credible limit, see [26], [27]. On
receipt of measurement yt , UCB-FT uses fixed threshold test
for access decision policy according to (6). Then, at the end of
time slot t, by obtaining the true channel state Ht , the reward
for time slot t is collected. Also, if the measurement sample
yt was taken from an unknown distribution, the prior should
be updated according to (10). More precisely, if It = i and
Ht = 1, the sample mean of SU i for the next time slot should
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be updated as ȳt+1
i =

n̂t
i ȳ

t
i +yt

n̂t
i+1 and n̂t

i should be increased by
1. For a pseudo code of the algorithm, see Algorithm 1.

C. Regret analysis of UCB-FT Algorithm

In this subsection, we analyze the performance of UCB-
FT algorithm in terms of regret. As seen in (9), the regret is
determined by E[nTi ]. We first state a theorem from [26] that
will be used in the performance analysis of UCB-FT.

Theorem 1 (Bounds on the inverse Gaussian cdf [26]): The
following bounds hold for the inverse cumulative distribution
function of the standard Gaussian random variable for each
α ∈ (0, 1√

2π
) and any β ≥ 1.02:

Φ
−1(1 − α) < β

√
− log (−2πα2) log(2πα)

Proof: See [26].
Now, we analyze the performance of UCB-FT algorithm. In

the following theorem, an upper bound on the regret is derived
and it is shown that the algorithm achieves logarithmic regret
growth rate uniformly in time.

Theorem 2 (Regret of UCB-FT): For all N > 1, if policy
UCB-FT is run on N SUs, then the expected regret after T
time slots is at most

inf
θ
′
∈(0,θ)

N∑
i=1

(pi∗ − pi )
[(2di

θ
′ +

1
√

2πe

)
log T +

di

θ
′

+
1
√

2πe
+

2

1 − e−
(θ−θ′ )

2

2

]
where di =

4β2σ2

(µi∗−µi )2 .

Proof: For any SU i, we upper-bound nTi in (8) as follows:

nTi =
T∑
t=1

1(It = i)

≤

T∑
t=1

1(qt
i > qt

i∗ )

≤ l +
T∑
t=1

1(qt
i > qt

i∗ ,n
t−1
i ≥ l)

≤ l +
T∑
t=1

1(qt
i > qt

i∗ ,n
t−1
i ≥ l, n̂t−1

i ≥ 1)

+

T∑
t=1

1(nt−1
i ≥ l, n̂t−1

i < 1)

where l is some positive integer. At each time t, qt
i > qt

i∗ if at
least one of the following inequalities holds.

µti∗ ≤ µi∗ − Ct
i∗ (14)

µti ≥ µi + Ct
i (15)

µi∗ < µi + 2Ct
i (16)

where Ct
i =

σ√
ξ2+n̂t

i

Φ−1(1−αt ) with αt =
1
Kt . Inequality (14)

holds if

µti∗ − µi∗ ≤ −
σ√

ξ2 + n̂t
i∗

Φ
−1(1 − αt )

⇔z ≤ −

√
n̂t
i∗ + ξ

2

n̂t
i∗
Φ
−1(1 − αt ) +

ξ2(µi∗ − µ0
i∗ )

σ
√

n̂t
i∗

(17)

where z is a standard normal random variable. For non-
informative prior, i.e. ξ → 0, (17) holds if and only if
z ≤ −Φ−1(1 − αt ). Therefore,

P((14)) = αt =
1

Kt

Similarly, (15) holds if

µti − µi ≥
σ√
ξ2 + n̂t

i

Φ
−1(1 − αt )

⇔z ≥

√
n̂t
i + ξ

2

n̂t
i

Φ
−1(1 − αt ) +

ξ2(µi − µ0
i )

σ
√

n̂t
i

(18)

For noninformative prior, i.e. ξ → 0, (18) holds if and only if
z ≥ Φ−1(1 − αt ). Therefore,

P((15)) = αt =
1

Kt

Inequality (16) holds if

µi∗ − µi <
σ√
ξ2 + n̂t

i

Φ
−1(1 − αt ) (19)

⇒
(µi∗ − µi )2

4β2σ2 (ξ2 + n̂t
i ) < − log(−2πα2

t log(2πα2
t )) (20)

⇒
(µi∗ − µi )2

4β2σ2 (ξ2 + n̂t
i ) < 1 + 2 log T − log 2 − log log T

(21)

⇔ n̂t
i <

4β2σ2

(µi∗ − µi )2 (1 + 2 log T − log 2 − log log T ) − ξ2

(19) ⇒ (20) follows from the inverse Gaussian tail bound
shown in Theorem 1. (21) follows by setting αt to 1√

2πet
. For

noninformative prior,

n̂t
i < di (1 + 2 log T − log 2 − log log T )

where di =
4β2σ2

(µi∗−µi )2 . Therefore,

P((16)) = P(n̂t
i < di (1 + 2 log T − log 2 − log log T )
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Now, taking the expectation on nTi and its upper bound,

E[nTi ] ≤ l +
T∑
t=1

P(qt
i > qt

i∗ ,n
t−1
i ≥ l)

≤ l +
T∑
t=1

P((14),nt−1
i ≥ l, n̂t−1

i ≥ 1) (22)

+

T∑
t=1

P((15),nt−1
i ≥ l, n̂t−1

i ≥ 1) (23)

+

T∑
t=1

P((16),nt−1
i ≥ l, n̂t−1

i ≥ 1) (24)

+

T∑
t=1

P(nt−1
i ≥ l, n̂t−1

i < 1) (25)

≤ l +
2
√

2πe

T∑
t=1

1
t

(26)

+

T∑
t=1

t−1∑
j=l

P(n̂t
i ≤ di (1 + 2 log T ),nt

i = j) (27)

(22) and (23) are combined and bounded by (26). (24) and
(25) are combined and bounded by (27).

Upper bound of (26): From integral test,

(26) ≤ l +
1
√

2πe

∫ T

1

1
t

dt = l +
1
√

2πe
(1 + log T )

Upper bound of (27): First, we show that n̂t
i − θnt

i is a
martingale.

n̂t
i − θnt

i =

t∑
s=1

1(Is = i)[
s∑
j=1

H j −

s−1∑
j=1

H j ] − θ
t∑

s=1

1(Is = i)

=

t∑
s=1

1(Is = i)[
s∑
j=1

(H j − θ) −
s−1∑
j=1

(H j − θ)]

Let Ms B
s∑
j=1

(H j − θ). Clearly, Ms is a martingale. Then,

since 1(Is = i) ∈ Fs−1, n̂t
i − θnt

i is also a martingale [28].
By setting l = di

θ
′ (1+2logT ) for some θ

′

< θ, the following
holds for any t ≥ l.

P(n̂t
i ≤ di (1 + 2logT ),nt

i ≥
di

θ
′ (1 + 2logT ))

≤ P(n̂t
i − θnt

i ≤
θ
′

− θ

θ
′ di (1 + 2logT )) ≤ P(n̂t

i − θnt
i ≤ (θ

′

− θ)t)

Therefore,
T∑
t=1

P(n̂t
i ≤ di (1 + logT ),nt

i ≥ l)

≤

T∑
t=1

P(n̂t
i − θnt

i ≤ (θ
′

− θ)t) ≤
T∑
t=1

2 exp(−
(θ
′

− θ)
2
t

2
)

≤
2

1 − e−
(θ′ −θ)

2

2

The second inequality follows from Azuma-Hoeffding in-
equality [29].

Combining the results, we obtain an upper bound on the
number of selections of SU i , i∗

E[nt
i ] ≤ inf

θ
′
∈(0,θ)

N∑
i=1

[(2di

θ
′ +

1
√

2πe

)
log T +

di

θ
′

+
1
√

2πe
+

2

1 − e−
(θ−θ′ )

2

2

]
where di =

4β2σ2

(µi∗−µi )2 . This completes the proof by (9).
Remark 2 (The number of sub-optimal selections and θ):

The leading constant of log T in the upper bound of E[nt
i ] is

inversely proportional to (µi∗−µi )
σ and monotonically decreases

as θ becomes close to 1. This coincides with our intuition;
Firstly, the result implies that it is easier to distinguish the
best SU when there is large channel quality difference between
SUs. Note that the upper bound we found is in the same order
of T as the following lower bound from [9].

E[nt
i ] ≥

( 1
K L(νi | |νi∗ )

logT + o(1)
)
, (28)

where K L(νi | |νj ) is the Kullback-Leibler divergence from
distribution νi and νj . When νi are Gaussian with different
mean µi with the same variance σ, K L(νi | |νi∗ ) =

(µi∗−µi )2

2σ2 ,
which also appears in our upper bound. However, since
sampling from the unknown distribution is limited to the time
instances of busy period of PU, we can see that it also includes
a parameter θ

′

related to PU activity. Note that we obtain lower
upper bound with higher probability of busy channel. It is easy
to see that the lower bound (28) also becomes lower for higher
θ because even through the KL divergence between two mixed
Gaussian does not have a closed form [30], it is clear the one
between two mixed Gaussian νi and νi∗ in the form of (3),
i.e. νi ∼ θN (yi |µi ,σ2) + (1 − θ)N (yi |0,σ2), becomes bigger
as θ increases. (However, for θ close enough to 1 or 0 such
that θ2+ (1 − θ)2 ≥ pi∗ , we can simply use randomized access
policy At = 1,w.p. θ for all t ≥ 1, without sensing). For a fixed
θ, θ

′

balances between the constant term and the log term. The
leading constant of log T becomes smaller as θ

′

approaches to
θ, at the cost of larger constant term.

Remark 3 (Comparison with 0-1 feedback): In UCB-FT,
it was assumed that the selected SU at each time t reports
its measurement result yt and the index qt

i associated with
each SU i is expressed as a function of ȳti . However, it is also
possible for the selected SU to make a local decision based on
its measurement and report its 0-1 binary result to the network
controller. This is more desirable when the feedback resource
is limited or the noise model is only known at the SU side.
By selecting SU i at time t, the network controller observes
a reward xti drawn from an unknown Bernoulli distribution
B(pi ) instead of yti from an unknown Normal distribution
N (µi ,σ2). Since Bernoulli reward has a support [0,1], the
network controller can use an allocation algorithm such as
UCB-1 from [11] for sensor selection by setting the index qt

i
as follows:

qt
i = x̄ti +

√
2 log t

nt
i
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where x̄ti is the average reward obtained from SU i. Note that
the index used for UCB-FT has a similar form to this with
ȳti , n̂t

i and σ2Φ−1(1 − 1
Kt ) in place of x̄ti , nt

i and log t. Using
UCB-1, the expected number of selections of sub-optimal SU
i is upper-bounded by:

E[nTi ] ≤
8

(pi∗ − pi )2 log T + 1 +
π2

3
.

Note that the leading constant of log T is inversely proportional
to (pi∗ − pi )2, which is always smaller than (µi∗ − µi )2 for a
given µ from the definition of pi in (8). Therefore, by learning
µ instead of p, we can expect to distinguish sub-optimal arms
more easily, and as the channel quality improves, the effect
will become more substantial. However, it must also be noted
that in a high SNR environment in which µ is relatively large
compared to σ, the difference between expected rewards from
optimal and sub-optimal selections can become negligible as
all SUs have very low error probability.

IV. SEQUENTIAL SENSOR SELECTION WITH A SAMPLE
MEAN BASED THRESHOLD TEST

A. Definition of Regret

In the previous section, it is assumed that the access
policy is given so that we can focus more on the sensing
scheduling. However, to achieve an optimal solution of the
original problem, optimal access policy needs to be employed
along with optimal sensor selection. For any given selection,
it is known that LLR (Log Likelihood Ratio) test minimizes
the probability of error. However, the threshold of LLR test is
a function of the unknown parameter µ. More specifically, if
SU i is scheduled for sensing at time slot t, LLR test will give
the following threshold test with unknown µi . Note that η∗i =
argminη 1 − pi (η) = argminη 1 −

(
(1 − θ)Φ( ησ ) + θΦ( µi−η

σ )
)
.

yti
1
≷
0
η∗i =

µi
2
+ log

1 − θ
θ

(29)

Now, we define the optimal reward with optimal threshold test
with known µ. Let i∗ denote the index of SU with largest µ,
i.e. i∗ = argmaxi µi . Then, the optimal policies are always
picking SU i∗ for sensing and making access decision using
threshold test with η∗ =

µi∗

2 + log 1−θ
θ . From (8),

RT
opt = p∗T =

[
(1 − θ)Φ(

µi∗ + 2a
2σ

) + θΦ(
µi∗ − 2a

2σ
)
]
T (30)

where a = log 1−θ
θ .

Obviously, if we use a stationary threshold test with some
η , η∗, the optimal reward p∗T is not equal to pi∗T . Therefore,
it is possible that the regret increases linearly in time horizon
T because (p∗ − pi ) > 0 for all i including i∗. Note that
the number of selections of SU i∗ increases linearly (i.e.
E[nTi∗ ] = O(T )) using UCB-FT. The logarithmic regret shown
in Theorem 2 is due to the assumption that (p∗ − pi∗ ) = 0,
which is not feasible in practice.

Algorithm 2 UCB-LLR (UCB with LLR test)

6: obtain yt and make access decision At as follows.

yt
At=1
≷

At=0

µtit
2
+ log

1 − θ
θ

B. UCB-LLR Algorithm

From (10), we know µti (the estimate of µi at time t) will
converge to true µi as n̂t

i → ∞. Therefore, in algorithm 2, we
slightly modify the UCB-FT algorithm so that instead of using
fixed threshold for access policy, we use the access policy (29)
with µi replaced by µti . The sensing scheduling policy remains
the same, which means the selection sequence is equivalent to
that of UCB-FT. The only difference would be the reward
drawn from each selection. We recall that for noninformative
prior, µti is equivalent to the sample mean of observations on
the active PU channel taken from SU i upto time t.

C. Regret Analysis of UCB-LLR Algorithm

A policy with a sub-linear growth rate of regret is long-run
average optimal in the sense that it achieves the same maxi-
mum average expected reward as in the known parameter case
asymptotically [14]. However, the slower the regret growth is,
the faster the convergence to this maximum average reward,
indicating a more effective learning ability of the policy. In the
following theorem, we show that the growth of the regret of
UCB-LLR is sub-linear in time horizon T , O(T

2
3+ε ) for some

ε > 0 to be more specific.
Theorem 3 (Regret of UCB-LLR): For all N > 1, if policy

UCB-LLR is run on N SUs, then the expected regret after T
time slots is at most

inf
m,θ

′
∈(0,1)

c1

θ
′
√
θ
′
T1−m

2 (
√

logT + 1) +
1
θ
′ T

m +

N∑
i=1

c2logT

+
∑
i,i∗

(2di

θ
′ log T +

di

θ
′

)
+

2N
√

2πe
+

2N

1 − e−
(θ−θ′ )

2

2

where c1 = βσ and c2 =
2√
2πe

and di =
4β2σ2

(µi∗−µi )2 .
Proof: Firstly, we note that the equalities in (9) do

not hold as the reward process is no longer i.i.d., thus
E[X t

i |Ft−1] , E[X t
i ]. However, even though the Bernoulli

reward process Xt is not i.i.d., we can still benefit from the
fact that the sensing samples are taken from a stationary
distribution of (1). Observe that E[X t

i |Ft−1] = E[1(yti ≥
µt
i

2 + log 1−θ
θ ,Ht = 1) + 1(yti <

µt
i

2 + log 1−θ
θ ,Ht = 0) |Ft−1].

Since µti ∈ Ft−1 and Ht and yti are independent of Ft−1, we
obtain the following equality.

RT
opt − RT = p∗T −

T∑
t=1

N∑
i=1

E
[
E[Xt1(It = i) |Ft−1]

]
(31)

≤

T∑
t=1

E[(p(µi∗ ) − p(µti∗ ))1(It = i∗)]

+

T∑
t=1

∑
i,i∗

E[(p(µi∗ ) − p(µti ))1(It = i)] (32)
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where p(µi∗ ) = p∗ and p(µti ) = (1 − θ)Φ(
µt
i+2a
2σ ) +

θΦ(
2µi−2a−µt

i

2σ ) from (9) and (31). To emphasize the depen-
dency of pi on µti , we use p(µti ) instead of pi here. As the
regret for i , i∗ is upper bounded by E[nTi ] which has been
proved to grow in the order of log T by Theorem 2, we focus
on bounding the first addend of (32).

T∑
t=1

(p(µi∗ ) − p(µti∗ ))1(It = i∗)

≤ l +
T∑
t=1

(p(µi∗ ) − p(µti∗ ))1(It = i∗,nt−1
i∗ ≥ l) (33)

≤ l +
T∑
t=1

(p(µi∗ ) − p(µti∗ ))
{
1(nt−1

i∗ ≥ l, n̂t−1
i∗ ≥ θ

′

l)

+ 1(nt−1
i∗ ≥ l, n̂t−1

i∗ < θ
′

l)
}

≤ l +
T∑
t=1

|µi∗ − µ
t
i∗ |1(n̂t−1

i∗ ≥ θ
′

l, |µi∗ − µti∗ | ≤ Ct
i∗ )

+

T∑
t=1

1(n̂t−1
i∗ ≥ θ

′

l, |µi∗ − µti∗ | ≥ Ct
i∗ )

+

T∑
t=1

1(nt−1
i∗ ≥ l, n̂t−1

i∗ < θ
′

l) (34)

The inequality (33) holds because

T∑
t=1

(p(µi∗ ) − p(µti∗ ))1(It = i∗,nt−1
i∗ < l)

≤

T∑
t=1

1(It = i∗,nt−1
i∗ < l) ≤ l .

The inequality (34) holds because |p(µi∗ ) − p(µti∗ ) | ≤
1√
2π
|µi∗ − µ

t
i∗ | and |p(µi∗ ) − p(µti∗ ) | ≤ 1.

Taking expectation on both sides,

T∑
t=1

E[(p(µi∗ ) − p(µti∗ ))1(It = i∗)] ≤ l

+

T∑
t=1

√
σ2

θ
′ l

(Φ−1(1 −
1

Kt
))2P(n̂t−1

i∗ ≥ θ
′

l, |µi∗ − µti∗ | ≤ Ct
i∗ )

(35)

+

T∑
t=1

P(z ≤ Φ−1(1 −
1

Kt
)) (36)

+

T∑
t=1

P(nt−1
i∗ ≥ l, n̂t−1

i∗ < θ
′

l) (37)

Upper bound of (35): By setting l = Tm

θ
′ (0 < m < 1) and

K =
√

2πe, (35) is bounded by

T∑
t=1

√
σ2

θ
′ l

(Φ−1(1 −
1

Kt
))2

≤
c1
√

Tm

T∑
t=1

(1 +
√

2logt) ≤ c1T1−m
2 (1 +

√
logT )

where c1 = βσθ
′− 3

2 . The first inequality follows from Theorem
1.

Upper bound of (36):

(36) =
T∑
t=1

1
Kt
≤

2
√

2πe
(1 + logT ).

Upper bound of (37): Similar to the upper bound of (27),
for any t ≥ l.

(37) ≤
T∑
t=l

P(n̂t
i − θnt

i ≤
θ
′

− θ

θ
′ Tm )

≤

T∑
t=1

P(n̂t
i − θnt

i ≤ (θ
′

− θ)t) ≤
2

1 − e−
(θ′ −θ)

2

2

Combining the results, the regret of SU i∗ is bounded by

c1

θ
′
√
θ
′
T1−m

2 (
√

logT + 1) +
1
θ
′ T

m + c2logT

+2
( 1

1 − e−
(θ′ −θ)

2

2

+
1
√

2πe

)
(38)

where c1 = βσ and c2 =
2√
2πe

. Combining (38) and the bound
from Theorem 2 for i , i∗ completes the proof.

Remark 4: Since ∀ε ∈ R+, logT < T ε

ε , (38) can be written
in the following form.

1
θ
′ T

m +
c1

θ
′
√
εθ
′

(
T1−m

2 +
ε
2 + T1−m

2
)
+ c2logT + c3 (39)

where c3 is the constant term of (38). (39) has the lowest order
in T when m = 2

3 +
ε
3 . Then, the bound becomes

c4T
2
3+

ε
3 + c5T

1
3−

ε
3 + c2logT + c3 (40)

where c4 =
1
θ
′ +

c1

θ
′
√
εθ
′ and c5 =

c1

θ
′
√
εθ
′ . Note that c4 and c5

is inversely proportional to ε . Therefore, the upper bound on
the regret has lower order in T as ε approaches 0, at the cost
of larger leading constant.

Remark 5 (Multiple SU selection): In this paper, we consider
a single SU selection at a time. If we select M SUs, M ≥ 2,
the problem will be in the form of combinatorial multi-armed
bandit [16]. By defining a set of arms as a super arm, it is
possible to treat each super arm as a classical arm and apply
the same algorithms, i.e. choosing the M SUs with the M
highest qt

i at each time t. This approach will result in an
exponential number of arms. However, considering that we
are more interested in the case where only a few SUs can be
scheduled at a time, this may be tolerable. If M = N , we no
longer need an selection algorithm, and the problem reduces
to finding an optimal threshold for the access decision. Since
in LDA, the optimal threshold test is equivalent to comparing
µT y with its threshold, learning µ will be equivalent to finding
an optimal weight vector for the data fusion [7]. However, as
M becomes large, the difference between the optimal solution
and the one using approximate threshold test can become
negligible.
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Fig. 5: Best fit to the empirical data from UCB-LLR
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V. PERFORMANCE EVALUATION

In this section, the algorithms of Section III and Section
IV are evaluated numerically. We consider an SU network
consisting of 12 SUs distributed randomly over 10km distance
from PU transmitter. Noise variance σ2 = 1.0 and µ is a
realization of random shadow fading with fixed dB-spread
σ2

0 = 2.0. Except for the result in Fig. 6, θ = 0.5. For
each experiment, we track the accumulated regret and the
percentage of selections of optimal SU. The plots show these
quantities on semi-log scale for 105 time slots averaged over
500 different runs.

The result in Fig. 5 shows the empirical behavior of UCB-
LLR. We fit three regret models to the data: (1) aT + b, (2)
a
√

T+b and (3) a log T+b. The best fit with minimum squared
error is depicted in Fig. 5. From which, we can see that UCB-
LLR has sub-linear regret in T . In fact, the results resemble
logarithmic growth very closely.

The result in Fig. 6 shows the effect of the probability of
channel availability on the algorithm performance. The regret
achieved under both UCB-FT and UCB-LLR is presented for
different θ’s. Earlier in Remark 2, we discussed that higher
θ provides more samples from the unknown distribution of
yt |Ht = 1. So, from the aspect of learning, the expected
number of selections of sub-optimal SUs decreases as θ
approaches to 1. However, for the regret, we need a more
careful examination as the expected reward pi drawn from
each selection of SU i is also a function of θ. From the
definition of pi in (8), we know that pi − pi∗ is a symmetric
bell shaped curve in θ, centered at θ = 1

2 . This means that due
to small regret per selection, the accumulated regret for some

θ < 1
2 can be lower than the one for θ = 1

2 even with more
selections. The result for θ = 0.2 being better than θ = 0.5
can be explained by this. Clearly, for large θ, not only have
we better learning from more sensing samples from yt |Ht = 1
but the regret from each selection is also small i.e. at the
tail of the curve (8) in θ. The result in Fig. 6 also provides a
comparison of empirical behaviors of UCB-FT and UCB-LLR.
Even though Theorem 3 only proved the sub-linear growth of
regret in T of UCB-LLR, Fig. 6 shows that it is very close to
that of UCB-FT, which has a logarithmic regret growth rate
in T .
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Fig. 7: The effect of scaling and transition of µ on the
algorithm performance

In Fig. 7, we observe the effect of different settings of
unknown parameter µ on the regret performance with 90%
confidence intervals marked at t = {10,102,103,104,105}. We
consider three different SU networks having the mean vector
µ1 (network 1), µ2 (network 2) and µ3 (network 3) for the
distribution of yt |Ht = 1. We choose a network 1 with a
random µ1 as a reference and generate µ2 such that µ2

i∗ = µ
1
i∗

for i∗ = argmax µ1
i and µ2

i − µ
2
i∗ =

1
2 (µ1

i − µ
1
i∗ ) for all i , i∗.

Note that this setting can happen when the characteristics of an
SU network such as network coverage or shadowing variance
change. As discussed in Remark 3, since the KL divergence
between the distribution of yti |Ht = 1 and yti∗ |Ht = 1 of
the network 2 has been reduced from that of network 1, we
have a larger leading constant of logT in the regret bound
and in the number of selections of sub-optimal SUs. The
result of µ2 in Fig. 7 coincides with this observation. It is
shown in Fig. 7 that we have a higher regret growth rate and
a lower convergence rate to the optimal SU selection with
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µ2. However, as discussed in Fig. 6, the KL divergence of
yti |Ht = 1 does not tell everything about the regret. To show
this, we take µ3 such that µ3

i = µ1
i + 0.5, for all i. Note that

this can be interpreted as the channel gain being improved by
0.5 for all SUs. Under this setting, the KL divergence between
the distribution of yti |Ht = 1 and yti∗ |Ht = 1 of the SUs in the
network 3 remains the same as network 1. However, similar
to the effect of θ on the regret for a given µi∗ − µi , for a given
θ, any change in µi including transitions affect the value of
pi∗ − pi due to the non-linear relationship between µi and
pi . Therefore, even a simple shifting of µ1 to µ3 can cause
changes in the regret growth rate. The results for µ3 in Fig. 7
explains this. The number of selections of the optimal SU is
almost the same for µ1 and µ3 whereas µ3 has smaller regret
than µ1.

In Fig. 8, we compare the empirical behavior of UCB-FT
and some existing selection algorithms UCB-1 [11], UCB-1
tuned and Thompson sampling [31]. Note that UCB-1, UCB-
1 tuned, and Thompson sampling can be considered as a 0-1
feedback while UCB-FT sends back the measurement data
yt to the network controller. Using 0-1 feedback, if SU i
is selected for sensing at time slot t, it measures the PU
signal, make a local binary decision and reports the result
to the network controller. The result in Fig. 8 shows how we
can benefit from an underlying structure of reward process,
taking advantage of relatively large KL divergence between
two Gaussian distributions of yti |Ht = 1 and yti∗ |Ht = 1
compared to the two Bernoulli distributions xti and xti∗ , where
xt = 1(yti ≥ ηi ,Ht = 1) +1(yti < ηi ,Ht = 0). By using UCB-
FT, it is shown that a regret growth rate which is even lower
than the theoretically proven lower bound of binary feedback
[9], i.e.

∑
i,i∗

pi∗−pi

KL(pi | |pi∗ ) logT , is achievable asymptotically as

we send back yt instead of binary decisions. However, it
should be noted that in practice, a 0-1 feedback also needs
to employ an access policy that can operate under uncertainty
such as the one proposed in our Algorithm 2.

VI. CONCLUSION

In this work, we develop a sequential sensor selection
and channel access algorithm without a priori information
on the underlying measurement distribution from which the
sensing samples are taken, with the objective of maximizing

total number of correct decisions on channel availability over
finite time period. To overcome the uncertainty issue, we
formulate our problem in the context of MAB problems
and propose a heuristic based access decision rule and a
sensor selection algorithm. We first show that the number
of sub-optimal selections of our proposed algorithm grows at
most logarithmically in time period T . Then, combined with
our access decision rule, we finally show that the algorithm
achieves sub-linear accumulated regret in time period T , i.e.
long-run average optimal. The performance of our algorithm is
evaluated through simulations under different channel settings.

Our study could be extended in several ways. Since channel
correlation can be easily incorporated in the prior distribution
of µ in our signal model, further study could elaborate on
this point providing a comprehensive design for cooperative
sensing. Further research could also take into account more
complicated settings such as (unknown) Markov PU channel
or fast user mobility. In particular, as we assumed that the
shadowing effect is time-invariant during the time horizon
T , the extent of allowable environmental variation and the
minimal achievable regret under high user mobility will be
studied in our future work.
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